Атомная энергетика, по мнению экологов и ученых, - перспективный, самый высокотехнологичный и наиболее дешевый вид генерации, и в ближайшее время человечество вряд ли найдет ей альтернативу. Ведущие европейские державы остаются верны своим планам по поддержке мирного атома: представители 12 стран ЕС - Болгарии, Великобритании, Венгрии, Испании, Литвы, Польши, Румынии, Словакии, Финляндии, Нидерландов, Франции и Чехии - подтвердили намерение развивать ядерную энергетику. О возможности возобновления ядерной программы спустя два года после событий на АЭС "Фукусима" заявляет даже Япония.
Какова стратегия развития атомной отрасли в Беларуси? В чем преимущества выбранного Беларусью российского проекта АЭС? Насколько будет защищена Белорусская АЭС от непредвиденного внешнего воздействия? Есть ли какая-то связь между АЭС и парниковым эффектом? На эти и другие вопросы ответят Николай Груша и Сергей Бояркин во время online конференции.
Вопросы конференции
Атомная станция - это объект, который подлежит специальному регулированию, ее сооружение сопровождается большим количеством экспертиз. При строительстве Россией таких объектов за пределами своей территории мы обязаны выполнять как нормативы безопасности национальные российские, так и нормативы безопасности той страны, в которой строим атомную станцию. В этом случае нормативы безопасности Беларуси. То есть параллельно проводятся две процедуры экспертиз: российские и белорусские. Оба эти процесса планируется завершить в июне, после чего по российской процедуре последует заключение глав госэкспертизы РФ. Завершением процесса по белорусской процедуре будет получение лицензии на сооружение первой атомной станции в Беларуси.
После получение этих двух документов мы сможем перейти к следующему этапу - основному периоду сооружения, который по классификации МАГАТЭ понимается как начало строительства атомной станции. Работы, которые ведутся сейчас по классификации МАГАТЭ являются работами подготовительного периода. Строительство атомной станции начинается со дня первой заливки бетона в фундаментную плиту реакторного отделения атомной электростанции. Заливка намечена на июль, до конца текущего года планируем полностью выполнить работы по сооружению фундаментной плиты - уникального сооружения толщиной 8 м. На этой монолитное плите находятся все важные для безопасности станции объекты. В 2013 году планируем приступить к сооружению на ней структуры объектов, составляющих ядерный остров.
В настоящее время работы ведутся по плану, но, пока лицензия не получена, делать прогнозы неправильно. Поскольку есть богатый опыт получения лицензий как в России, так и в других странах, мы с оптимизмом смотрим в будущее и надеемся, что в июне лицензионный процесс завершится как по российской, так и по белорусской процедуре.
Директор департамента по ядерной энергетике Министерства энергетики Николай Груша: Добавлю, что сегодня ведутся работы по завершению сооружения производственной базы - это гигантские территории, цеха, на которых будут возводиться крупногабаритные элементы конструкции ядерного реактора, защитной оболочки. В настоящее время генеральный подрядчик совместно с заказчиком, то есть с дирекцией строительства атомной станции, проводится очень важный этап - заказ оборудования длительного цикла изготовления, без которого невозможно сооружение основного периода. Длительный цикл предполагает изготовление некоторых элементов оборудования и составляет около 36 месяцев. Этот момент является одним из ключевых.
После того как эксплуатация заканчивается, станция приводится в ядерно безопасное состояние, извлекается топливо, другие элементы, которые за прошедшие годы набрали радиоактивность. И объект перестает быть радиоактивно опасным.
Стоимость реабилитации территории зависит от того, что мы хотим на этой площадке иметь. Например, разместить там зеленую лужайку - это не прагматично. Ведь линии электропередачи к станции подведены, инфраструктура есть. Разумно, выводя из эксплуатации реактор, строить рядом другой энергетический объект. Какой конкретно, предсказать сложно, - это покажут технологии, которые будут через 80 лет. В любом случае электричество будет передаваться по проводам.
Общепринятая мировая концепция следующая: когда выводится из эксплуатации энергоблок, на его месте строится другой энергетический объект, использующий существующую инфраструктуру.
Если эта территория будет в промышленной эксплуатации, то стоимость реабилитации будет составлять 20-25% от стоимости нового объекта.
При эксплуатации станции, скажем, в России идут внутри тарифа специальные отчисления на затраты, связанные с ее закрытием в будущем, они составляют 1,3%. Эти деньги аккумулируются в специальном фонде, они не могут использоваться ни на какие другие цели, кроме как на вывод из эксплуатации. И эти суммы многократно перекрывают ту потребность в деньгах, которые необходимы для вывода из эксплуатации блока.
Что касается территории, то реабилитации реально подлежат два так называемых ядерных острова примерно по полтора гектара. Это небольшая территория.
Соответствующие технологии реабилитации есть, они отработаны прежде всего в военной сфере (когда Россия утилизировала огромное количество ядерных реакторов с подводных лодок). Как это делается, мы понимаем и знаем. Есть подготовленные специалисты.
Технико-экономические расчеты, выполненные белорусскими учеными и специалистами при рассмотрении необходимости развития ядерной энергетической программы, подтвердили целесообразность строительства АЭС. Рассмотрение различных сценариев покрытия прогнозируемого дефицита электрических мощностей показало, что введение в энергосистему источника на ядерном топливе приведет к снижению стоимости производимой энергосистемой электроэнергии за счет сокращения затрат на топливо.
Было определено, что оптимальным вариантом развития энергетики в Беларуси является ввод в 2018-2020 году ядерных энергоблоков суммарной электрической мощностью около 2 млн.кВт, при этом доля АЭС в производстве электроэнергии составит примерно 25 %.
По расчетам РУП «Белнипиэнергопром», являющегося генеральным проектировщиком для координации выполнения проектно-сметной документации на строительство АЭС, годовая экономия затрат на топливо в белорусской энергосистеме составит 5,6 млн. т.у.т. (более $1,7 млрд.); снижение себестоимости отпускаемой продукции – свыше $1 млрд. в год; прибыль от реализации продукции возрастет более чем на $1 млрд. в год. При этом простой срок окупаемости проекта составит около 19 лет.
Построив АЭС, Беларусь сможет заместить значительную часть импортируемых энергоресурсов (около 5,6 млн. т.у.т., или около 5 млрд. куб.м природного газа в год) и изменить структуру топливно-энергетического баланса в сторону снижения потребления природного газа, а также диверсифицировать поставщиков и виды топлива в топливно-энергетическом балансе, что приведет к снижению себестоимости электроэнергии.
Таким образом, строительство Белорусской АЭС позволит повысить экономическую и энергетическую безопасности страны. С другой стороны, это будет способствовать экономическому и социальному развитию региона, в котором она размещена: повысится уровень жизни населения, улучшится демографический состав, образовательный и культурный уровень жителей, медицинское обслуживание.
Выполнение заказов для АЭС позволит поднять технический, технологический уровень промышленных предприятий республики и повысить квалификацию кадров, то есть повысить культуру производства. А опыт, приобретенный при строительстве АЭС, в перспективе позволит использовать промышленный и кадровый потенциал страны при возведении объектов ядерной энергетики как в республике, так и за рубежом.
Кроме того, в случае, если мы не будем развивать ядерную энергетику, то будем вынуждены строить, например, угольные станции. По удельным вложениям с учетом затрат на охрану экологии эти вещи примерно сопоставимы. К тому же это означает зависимость от непрерывных поставок энергоносителя. Строительство по российскому проекту не означает зависимости от России, ядерная зависимость иного порядка. Если газовая, угольная станции зависимы от постоянных поставок, то ядерное топливо перегружается один раз в полтора года. Ядерная генерация значительно дешевле, чем любая иная на органическом топливе. Ее себестоимость не зависит от колебаний цен на мировом рынке урана.
Есть вещи, которые, может быть, экономически сегодня непросто определить, но мы выходим на совершенно иной технологический уровень. У нас реализуется программа подготовки кадров, появляются новые специальности, наши организации участвуют в строительстве белорусской АЭС.
Сегодня рассматривается вопрос и в ближайшем будущем будут внесены изменения в нормативно-правовую базу Российской Федерации, согласно которым наши строительно-монтажные организации получат возможность работать на объектах ядерной энергетики РФ. Благодаря этому они получат необходимый опыт, востребованный при строительстве белорусской АЭС. При этом у нас с Российской Федерацией есть договоренность о привлечении белорусских строительно-монтажных организаций не только в строительстве российских АЭС, но и объектов за рубежом.
Но большая часть поступает в близлежащие зоны, и поскольку они огромные, там накапливается достаточно много радиоактивных веществ. В свое время, когда в Москве шла дискуссия по поводу исследовательских реакторов, экологические организации проводили съемку радиоактивного фона города. Самый высокий фон оказался далеко не там, где находятся исследовательские реакторы, а на Площади трех вокзалов. Все мы помним, что проводницы заваривали чай на угле, а золу выбрасывали на пути. Накопившийся за эти годы угольный шлак создал там самый высокий радиоактивный фон.
Еще один пример: в 2008 году мы делали нулевую съемку радиоактивного фона на площадке будущей Балтийской АЭС. Мы обнаружили в нескольких местах аномальное увеличение фона техногенного происхождения. Оказалось, что это связано с выпадением осадков с угольных ТЭЦ Польши. Роза ветров была западная, поэтому сжигаемый на ТЭЦ дым переносился в сторону Калининградской области, где в виде осадков выпадал. Там, где эти осадки концентрировались, наблюдалось существенно превышение радиоактивного фона.
Вокруг угольных станций существует заметное техногенное увеличение радиоактивного фона. А вот вокруг атомных станций заметного увеличения радиоактивного фона нет. За все время регистраций, по нашим нормативам, изменение радиоактивного фона не должно превышать 0,1%. Реально же это в 10 раз меньше, то есть 0,01%. Заметить это увеличение можно лишь сверхчувствительной аппаратурой.
Угольные станции дают изменение радиоактивного фона на несколько, иногда даже десятков, процентов. Это можно зафиксировать с помощью обычного дозиметра.
Сергей Бояркин: На атомной станции есть две составляющие - капитальная и операционная, последняя составляет около 1 цента за кВт/ч. Капитальная составляющая зависит от стоимости строительства, которая у нас является самой конкурентоспособной в мире и существенно меньше, чем у японцев. Также эта составляющая зависит от срока окупаемости атомной станции. Если государство захочет быстро окупить вложения, то будет продавать электроэнергию дороже. Если главное не срок окупаемости, а низкие тарифы для населения, то срок окупаемости будет определен больше. Это вопрос решения правительства.
Мы подходили непредвзято, смотрели, что в мире эксплуатируют, какие новые проекты есть, что разрабатывают. Все оказалось просто. Примерно две трети эксплуатируемых станций относится к одному типу атомных реакторов. Это водо-водяные энергетически корпусные реакторы. Но имели ли мы право ориентироваться на поколение, которое разрабатывалось в 70-е или начале 80-х. В мире есть условная градация на проекты первого, второго, третьего поколения. В связи с увеличением требований международного сообщества к безопасности нужно ли было строить станцию поколения "два с половиной", которую нам предлагал Китай? Пришлось бы через какое-то время приступать к ее модернизации.
Нового оказалось не так уж много. Варианты предложили американская компания и франко-германская группа. Еще активно участвовала Россия.
По техническим характеристикам российские разработки никак не уступают зарубежным проектам, а по многим показателям и превосходят их. Особенно важно сочетание активных и пассивных систем безопасности. Мы можем абсолютно показательно подтвердить, что российские проекты не хуже.
Я бывал на многих станциях и знаю, что поставщики удивляются, что может значить язык. А это тонны инструкций. Важно говорить на языке поставщика технологий. Уровень подготовки технических специалистов даже английского языка не настолько достаточен, чтобы адекватно реагировать на любую внештатную ситуацию. Возможность подготовки специалистов на русском языке несравнима. На мой взгляд, мы сделали правильный выбор. Российская станция самая надежная из всех и будет лучше эксплуатироваться. К тому же с точки зрения запчастей немаловажно почти единое государство.
Сергей Бояркин: Где-то в начале 2000-х сообщество сформулировало требования к реакторам третьего поколения. Главное, что при любой аварии, вероятность которой составляет одно событие в 10 млн. лет, атомная станция третьего поколения должна иметь в своем составе устройства, которые локализуют реактивность внутри станции и не допустят выхода за пределы промплощадки. Это основное отличие станции третьего поколения. Оно означает, что даже при самой тяжелой аварии эвакуации населения не требуется по той простой причине, что все остается внутри. Радиус эвакуации составляет 800 м от оси реакторного здания. То есть зона эвакуации станции будет в пределах ее ограды.
Когда Беларусь делала выбор, на рынке были заявлены три проекта реакторов третьего поколения - наш, американский и европейский. Но и тогда, и сейчас американские и европейские специалисты реально ни одного такого блока нигде не построили, опыта их эксплуатации нет. Наш первый блок третьего поколения, который первым в мире в 2005 году пущен на Тяньваньской АЭС в Китае, выдержал более 20 инспекций МАГАТЭ и был признан первым в мире блоком поколения "три плюс", который отвечает всем требованиям. На сегодня мы являемся единственным в мире поставщиком, который имеет референтный, то есть построенный и эксплуатируемый, блок такого поколения. Коллеги из Франции должны были в 2009 году пустить блок в Финляндии, сейчас 2013 год. Они заявляют, что, наверное, в 2014 году пустят. При начальном бюджете 3 млрд. евро уже потрачено 7 млрд. и объект еще продолжают строить. Поэтому месяц назад финны пригласили нас участвовать в тендере на новый блок у себя. То, что наша технология является абсолютно безопасной и референтной, признано всеми, в том числе Евросоюзом. Я не зря упомянул Финляндию, просто финский надзорный орган считается самым строгим в мире. И то, что они приняли решение пригласить нас в тендер, а они очень хорошо знают нашу технологию, говорит само за себя.
Техническое качество нашего проекта подтверждено. И еще один важный момент: Россия - единственная страна в мире, которая делает станции в серии. Проанализировав предыдущий опыт, мы пришли к выводу, что серийное строительство станций - отдельная специальная компетенция, которую надо выращивать. Могу сказать, что Россия - единственная страна, которая строит не просто в срок, но и с экономией бюджета. Например, последний блок на той же Калининской стации №4 мы пустили год назад на месяц раньше срока, что дало экономию бюджета 6%. Это является для наших конкурентов мечтой и пока не осуществлено.
С точки зрения цунами... На самом деле цунами привело к затоплению резервных систем энергоснабжения на АЭС "Фукусима". В соответствии с нормативами, по которым проектируются российские станции, объекты резервного энергоснабжения размещаются на высоких отметках - не на отметке минус 10, как это было на "Фукусиме", а на отметке плюс 15. Поэтому представить себе, что вода поднимется на такой уровень, невозможно.
При этом каждый из генераторов находится в изолированном помещении, которое имеет соответствующую защиту. И количество этих генераторов - на каждый блок 4 резервных дизель-генератора и один штатный. Системой коммутации предусмотрено, что любой из дизель-генераторов любого блока может подавать энергию как на свой, так и на соседний блок.
На АЭС "Фукусима" было 6 энергоблоков: на первых четырех все дизель-генераторы вышли из строя, а на оставшихся двух один генератор уцелел. И поэтому 5-й и 6-й блоки АЭС "Фукусима" готовы к работе хоть сейчас. Они вообще не пострадали. Только один дизель-генератор позволил предотвратить более серьезное развитие сценария. Станция спокойно остановилась, было отведено остаточное тепло. Но, к сожалению, система коммутации не позволяла перекоммутировать энергию с этого дизель-генератора на первые 4 блока, и там произошло то, что произошло.
Так вот в нашем проекте все эти сценарии учтены, поэтому от наводнений, затоплений станция защищена очень хорошо.
Безусловно, террористические угрозы - тоже очень серьезная вещь. Все объекты первого контура, т.е. там, где у нас находятся радиоактивные вещества, расположены внутри герметичного контайнмента. Контайнмент имеет две оболочки: внутренняя оболочка имеет толщину 1 метр 20 см - это напряженный бетон, изнутри обшитый шестимиллиметровым стальным листом, наружная оболочка имеет толщину 0,8 метра. Между ними межоболочное пространство в 1 метр 80 см, вентилируемое и фильтрующее атмосферу, чтобы радиация не могла выйти через это пространство. Фактически эта система и защищает от любых внешних воздействий.
Та взрывная волна, которую выдерживает эта оболочка, в тысячи раз больше той, что была в Челябинске при падении метеорита. Она бы не оказала на станцию никакого влияния.
Рассмотрение строительства второй электростанции целесообразно, однако для его подтверждения необходимо оценивать долгосрочный прогноз социально-экономического развития страны, промышленности. Важно определить, сколько нам понадобится электроэнергии, какие объекты планируется вывести из эксплуатации. Если такая необходимость будет подтверждена, то почему бы и нет. К слову, на Островецкой площадке можно еще как минимум два энергоблока построить.
Сергей Бояркин: Коллеги из Чехии, Словакии на государственном уровне приняли решение об увеличении доли атомной энергетики в энергобалансе своих стран. Чехия поставила себе задачу нарабатывать в 2030 году 60% электроэнергии на атомных станциях, а Словакия - 80%. Эти страны сопоставимы по размерам с Беларусью.
Благодаря фундаментальным законам реакторы четвертого поколения имеют принципиально более высокий уровень безопасности. Их можно будет размещать в том числе и вблизи крупных городов.
У нас есть федеральная целевая программа, которая называется "Создание новой технологической платформы". Стоимость программы - $15 млрд. Действует она с прошлого года. В рамках этой программы мы не просто должны создать реактор четвертого поколения. Реактор - это элемент большой системы. И основополагающим для этой системы является так называемый ядерный топливный цикл. Мы фактически создаем новый ядерный топливный цикл, благодаря которому ядерная энергетика не только не будет увеличивать количество радиоактивных веществ, а будет, в том числе, перерабатывать те радиоактивные отходы, которые накопились в предыдущие годы. Ядерная энергетика нового поколения будет уменьшать количество радиоактивных отходов в мире.
Всем известно, что в республике более 1800 потенциальных для ветряных установок мест размещения. Ветряную станцию нельзя построить в любом месте. Нужны холмистые места, где скорость ветра более 2-4 м/с, иначе она вообще не будет работать. До 2015 года планируется решить вопрос со строительством ветропарков общей мощностью около 50 МВт. Если говорить о возобновляемых источниках, солнечная энергия в меньшей степени зависит от места размещения.
Сергей Бояркин: Есть важный технический параметр любого энергетического объекта - коэффициент использования установленной мощности. Ветропарки, существующие в Европе, делятся на две категории: наземные и офшорные, которые вынесены на отмели в Северном и Балтийском морях и находятся на морском дне. Коэффициент использования наземных ветряков в Западной Европе - 10%, в офшорных зонах - 30%. Если нужно заменить 1 ГВт атомной мощности ветряками, надо построить ветроустановки установленной мощностью почти в десять раз больше, чем была бы у АЭС. При этом 1 ГВт установленной мощности ветряка и 1 ГВт установленной мощности атомной станции по цене примерно одинаковы, если ветряк наземный. Морской будет в три раза дороже.
Если подсчитать эффективное производство ветряных установок, окажется, что для того, чтобы произвести столько же электроэнергии, сколько производит атомная станция, понадобится потратить в десять раз больше средств на сооружение замещающих мощностей. С другой стороны, атомная станция работает тогда, когда надо. В среднем по году ветряки с суммарной установленной мощностью 9 ГВт произведут те же 6-7 тВт.ч электроэнергии, которые производит 1 ГВт атомной станции. Но этот гигаватт в течение года будет производиться ровно, за исключением двухнедельной остановки на перегруз топлива. А ветряк будет производить энергию тогда, когда дует ветер, вне зависимости от того, есть в это время потребность в энергетике или нет. Собственно, поэтому из более чем 100 заявленных проектов строительства офшорных ветропарков в Германии реализован только один. Поэтому говорить о том, что ветряки каким-то образом влияют на энергетику Европы, преждевременно.